1 module nxt.hungarian;
2 
3 version(none):					// TODO: activate
4 
5 /// Origin: http://fantascienza.net/leonardo/so/hungarian.d.
6 
7 /* Copyright (c) 2012 Kevin L. Stern
8  *
9  * Permission is hereby granted, free of charge, to any person obtaining a copy
10  * of this software and associated documentation files (the "Software"), to deal
11  * in the Software without restriction, including without limitation the rights
12  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
13  * copies of the Software, and to permit persons to whom the Software is
14  * furnished to do so, subject to the following conditions:
15  *
16  * The above copyright notice and this permission notice shall be included in
17  * all copies or substantial portions of the Software.
18  *
19  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
20  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
21  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
22  * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
23  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
24  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
25  * SOFTWARE.
26  */
27 
28 /**
29  * An implementation of the Hungarian algorithm for solving the assignment
30  * problem. An instance of the assignment problem consists of a number of
31  * workers along with a number of jobs and a cost matrix which gives the cost of
32  * assigning the i'th worker to the j'th job at position (i, j). The goal is to
33  * find an assignment of workers to jobs so that no job is assigned more than
34  * one worker and so that no worker is assigned to more than one job in such a
35  * manner so as to minimize the total cost of completing the jobs.
36  * <p>
37  *
38  * An assignment for a cost matrix that has more workers than jobs will
39  * necessarily include unassigned workers, indicated by an assignment value of
40  * -1; in no other circumstance will there be unassigned workers. Similarly, an
41  * assignment for a cost matrix that has more jobs than workers will necessarily
42  * include unassigned jobs; in no other circumstance will there be unassigned
43  * jobs. For completeness, an assignment for a square cost matrix will give
44  * exactly one unique worker to each job.
45  *
46  * This version of the Hungarian algorithm runs in time O(n^3), where n is the
47  * maximum among the number of workers and the number of jobs.
48  *
49  * @author Kevin L. Stern
50  *
51  * Ported to D language, Oct 8 2012 V.1.2, by leonardo maffi.
52  */
53 struct HungarianAlgorithm(T) {
54     import std.algorithm: max;
55     import std.traits: isFloatingPoint;
56 
57     static if (isFloatingPoint!T)
58         enum T infinity = T.infinity;
59 	else
60         enum T infinity = T.max; // Doesn't work with Bigint.
61 
62     private T[][] costMatrix;
63     private int rows, cols, dim;
64     private T[] labelByWorker, labelByJob, minSlackValueByJob;
65     private int[] minSlackWorkerByJob, matchJobByWorker,
66                   matchWorkerByJob, parentWorkerByCommittedJob;
67     private bool[] committedWorkers;
68 
69     /**
70      * Construct an instance of the algorithm and Execute the algorithm.
71      *
72      * @param costMatrix
73      *            the cost matrix, where matrix[i][j] holds the cost of
74      *            assigning worker i to job j, for all i, j. The cost matrix
75      *            must not be irregular in the sense that all rows must be the
76      *            same length.
77      *
78      * @return the minimum cost matching of workers to jobs based upon the
79      *         provided cost matrix. A matching value of -1 indicates that the
80      *         corresponding worker is unassigned.
81      */
82     public static int[] opCall(in T[][] costMatrix_)
83     pure /*nothrow*/
84 	in(costMatrix_.length > 0)
85 	in
86 	{
87         foreach (row; costMatrix_) // is rectangular
88             assert(row.length == costMatrix_[0].length);
89     }
90 	do
91 	{
92         HungarianAlgorithm self;
93         self.dim = max(costMatrix_.length, costMatrix_[0].length);
94         self.rows = costMatrix_.length;
95         self.cols = costMatrix_[0].length;
96         self.costMatrix = new T[][](self.dim, self.dim);
97 
98         foreach (w; 0 .. self.dim)
99             if (w < costMatrix_.length)
100                 self.costMatrix[w] = copyOf(costMatrix_[w], self.dim);
101             else
102                 self.costMatrix[w][] = 0; // For Java semantics.
103 
104         self.labelByWorker.length = self.dim;
105         self.labelByWorker[] = 0; // Necessary to follow Java semantics.
106         self.labelByJob.length = self.dim;
107         self.minSlackWorkerByJob.length = self.dim;
108         self.minSlackValueByJob.length = self.dim;
109         self.committedWorkers.length = self.dim;
110         self.parentWorkerByCommittedJob.length = self.dim;
111         self.matchJobByWorker.length = self.dim;
112         self.matchJobByWorker[] = -1;
113         self.matchWorkerByJob.length = self.dim;
114         self.matchWorkerByJob[] = -1;
115 
116         /*
117          * Heuristics to improve performance: Reduce rows and columns by their
118          * smallest element, compute an initial non-zero dual feasible solution
119          * and create a greedy matching from workers to jobs of the cost matrix.
120          */
121         self.reduce();
122         self.computeInitialFeasibleSolution();
123         self.greedyMatch();
124 
125         auto w = self.fetchUnmatchedWorker();
126         while (w < self.dim) {
127             self.initializePhase(w);
128             self.executePhase();
129             w = self.fetchUnmatchedWorker();
130         }
131         auto result = copyOf(self.matchJobByWorker, self.rows);
132         foreach (ref r; result)
133             if (r >= self.cols)
134                 r = -1;
135         return result;
136     }
137 
138     static T[] copyOf(T)(in T[] input, in size_t size) pure /*nothrow*/ {
139         if (size <= input.length)
140             return input[0 .. size].dup;
141         else {
142             auto result = new T[size];
143             result[0 .. input.length] = input[];
144             result[input.length .. $] = 0; // Necessary to follow Java semantics.
145             return result;
146         }
147     }
148 
149     /**
150      * Compute an initial feasible solution by assigning zero labels to the
151      * workers and by assigning to each job a label equal to the minimum cost
152      * among its incident edges.
153      */
154     void computeInitialFeasibleSolution() pure nothrow {
155         labelByJob[] = infinity;
156         foreach (w, row; costMatrix)
157             foreach (j, rj; row)
158                 if (rj < labelByJob[j])
159                     labelByJob[j] = rj;
160     }
161 
162     /**
163      * Execute a single phase of the algorithm. A phase of the Hungarian
164      * algorithm consists of building a set of committed workers and a set of
165      * committed jobs from a root unmatched worker by following alternating
166      * unmatched/matched zero-slack edges. If an unmatched job is encountered,
167      * then an augmenting path has been found and the matching is grown. If the
168      * connected zero-slack edges have been exhausted, the labels of committed
169      * workers are increased by the minimum slack among committed workers and
170      * non-committed jobs to create more zero-slack edges (the labels of
171      * committed jobs are simultaneously decreased by the same amount in order
172      * to maintain a feasible labeling).
173      *
174      * The runtime of a single phase of the algorithm is O(n^2), where n is the
175      * dimension of the internal square cost matrix, since each edge is visited
176      * at most once and since increasing the labeling is accomplished in time
177      * O(n) by maintaining the minimum slack values among non-committed jobs.
178      * When a phase completes, the matching will have increased in size.
179      */
180     void executePhase() pure nothrow {
181         while (true) {
182             int minSlackWorker = -1, minSlackJob = -1;
183             auto minSlackValue = infinity;
184             foreach (j, pj; parentWorkerByCommittedJob)
185                 if (pj == -1)
186                     if (minSlackValueByJob[j] < minSlackValue) {
187                         minSlackValue = minSlackValueByJob[j];
188                         minSlackWorker = minSlackWorkerByJob[j];
189                         minSlackJob = j;
190                     }
191 
192             if (minSlackValue > 0)
193                 updateLabeling(minSlackValue);
194             parentWorkerByCommittedJob[minSlackJob] = minSlackWorker;
195             if (matchWorkerByJob[minSlackJob] == -1) {
196                 // An augmenting path has been found.
197                 int committedJob = minSlackJob;
198                 int parentWorker = parentWorkerByCommittedJob[committedJob];
199                 while (true) {
200                     immutable temp = matchJobByWorker[parentWorker];
201                     match(parentWorker, committedJob);
202                     committedJob = temp;
203                     if (committedJob == -1)
204                         break;
205                     parentWorker = parentWorkerByCommittedJob[committedJob];
206                 }
207                 return;
208             } else {
209                 // Update slack values since we increased the size of the
210                 // committed workers set.
211                 immutable int worker = matchWorkerByJob[minSlackJob];
212                 committedWorkers[worker] = true;
213                 for (int j = 0; j < dim; j++) { // Performance-critical.
214                     if (parentWorkerByCommittedJob[j] == -1) {
215                         immutable slack = cast(T)(costMatrix[worker][j] -
216                                                   labelByWorker[worker] -
217                                                   labelByJob[j]);
218                         if (minSlackValueByJob[j] > slack) {
219                             minSlackValueByJob[j] = slack;
220                             minSlackWorkerByJob[j] = worker;
221                         }
222                     }
223                 }
224             }
225         }
226     }
227 
228     /**
229      *
230      * @return the first unmatched worker or {@link #dim} if none.
231      */
232     int fetchUnmatchedWorker() const pure nothrow {
233         foreach (w, mw; matchJobByWorker)
234             if (mw == -1)
235                 return w;
236         return dim;
237     }
238 
239     /**
240      * Find a valid matching by greedily selecting among zero-cost matchings.
241      * This is a heuristic to jump-start the augmentation algorithm.
242      */
243     void greedyMatch() pure nothrow {
244         foreach (w, row; costMatrix)
245             foreach (j, rj; row)
246                 if (matchJobByWorker[w] == -1
247                         && matchWorkerByJob[j] == -1
248                         && rj - labelByWorker[w] - labelByJob[j] == 0)
249                     match(w, j);
250     }
251 
252     /**
253      * Initialize the next phase of the algorithm by clearing the committed
254      * workers and jobs sets and by initializing the slack arrays to the values
255      * corresponding to the specified root worker.
256      *
257      * @param w
258      *            the worker at which to root the next phase.
259      */
260     void initializePhase(in int w) pure nothrow {
261         committedWorkers[] = false;
262         parentWorkerByCommittedJob[] = -1;
263         committedWorkers[w] = true;
264         foreach (j, ref mj; minSlackValueByJob) {
265             mj = cast(T)(costMatrix[w][j] - labelByWorker[w] - labelByJob[j]);
266             minSlackWorkerByJob[j] = w;
267         }
268     }
269 
270     /**
271      * Helper method to record a matching between worker w and job j.
272      */
273     void match(in int w, in int j) pure nothrow {
274         matchJobByWorker[w] = j;
275         matchWorkerByJob[j] = w;
276     }
277 
278     /**
279      * Reduce the cost matrix by subtracting the smallest element of each row
280      * from all elements of the row as well as the smallest element of each
281      * column from all elements of the column. Note that an optimal assignment
282      * for a reduced cost matrix is optimal for the original cost matrix.
283      */
284     void reduce() pure /*nothrow*/ {
285         foreach (ref row; costMatrix) {
286             auto min = infinity;
287             foreach (r; row)
288                 if (r < min)
289                     min = r;
290             row[] -= min;
291         }
292         auto min = new T[dim];
293         min[] = infinity;
294         foreach (row; costMatrix)
295             foreach (j, rj; row)
296                 if (rj < min[j])
297                     min[j] = rj;
298         foreach (row; costMatrix)
299             row[] -= min[];
300     }
301 
302     /**
303      * Update labels with the specified slack by adding the slack value for
304      * committed workers and by subtracting the slack value for committed jobs.
305      * In addition, update the minimum slack values appropriately.
306      */
307     void updateLabeling(in T slack) pure nothrow {
308         foreach (w, cw; committedWorkers)
309             if (cw)
310                 labelByWorker[w] += slack;
311         foreach (j, pj; parentWorkerByCommittedJob)
312             if (pj != -1)
313                 labelByJob[j] -= slack;
314             else
315                 minSlackValueByJob[j] -= slack;
316     }
317 }
318 
319 
320 //void main() {
321 unittest {
322     import std.stdio, std.random, std.datetime, std.exception, core.exception,
323            std.typecons, std.range, std.algorithm, std.typetuple;
324 
325 //    {
326 //        version (assert) {
327 //            const double[][] mat0 = [];
328 //            assertThrown!(AssertError)(HungarianAlgorithm!double(mat0));
329 //        }
330 //    }
331 
332     {
333         const double[][] mat0 = [[], []];
334         const r0 = HungarianAlgorithm!double(mat0);
335         assert(r0 == [-1, -1]);
336     }
337 
338     {
339         const double[][] mat0 = [[1]];
340         const r0 = HungarianAlgorithm!double(mat0);
341         assert(r0 == [0]);
342     }
343 
344     {
345         const double[][] mat0 = [[1], [1]];
346         const r0 = HungarianAlgorithm!double(mat0);
347         assert(r0 == [0, -1]);
348     }
349 
350     {
351         const double[][] mat0 = [[1, 1]];
352         const r0 = HungarianAlgorithm!double(mat0);
353         assert(r0 == [0]);
354     }
355 
356     {
357         const double[][] mat0 = [[1, 1], [1, 1]];
358         const r0 = HungarianAlgorithm!double(mat0);
359         assert(r0 == [0, 1]);
360     }
361 
362     {
363         const double[][] mat0 = [[1, 1], [1, 1], [1, 1]];
364         const r0 = HungarianAlgorithm!double(mat0);
365         assert(r0 == [0, 1, -1]);
366     }
367 
368 
369     {
370         const double[][] mat0 = [[1, 2, 3], [6, 5, 4]];
371         const r0 = HungarianAlgorithm!double(mat0);
372         assert(r0 == [0, 2]);
373     }
374 
375     {
376         const double[][] mat0 = [[1, 2, 3], [6, 5, 4], [1, 1, 1]];
377         const r0 = HungarianAlgorithm!double(mat0);
378         assert(r0 == [0, 2, 1]);
379     }
380 
381 
382     {
383         const int[][] mat0 = [[], []];
384         const r0 = HungarianAlgorithm!int(mat0);
385         assert(r0 == [-1, -1]);
386     }
387 
388     {
389         const int[][] mat0 = [[1]];
390         const r0 = HungarianAlgorithm!int(mat0);
391         assert(r0 == [0]);
392     }
393 
394     {
395         const int[][] mat0 = [[1], [1]];
396         const r0 = HungarianAlgorithm!int(mat0);
397         assert(r0 == [0, -1]);
398     }
399 
400     {
401         const int[][] mat0 = [[1, 1]];
402         const r0 = HungarianAlgorithm!int(mat0);
403         assert(r0 == [0]);
404     }
405 
406     {
407         const int[][] mat0 = [[1, 1], [1, 1]];
408         const r0 = HungarianAlgorithm!int(mat0);
409         assert(r0 == [0, 1]);
410     }
411 
412     {
413         const int[][] mat0 = [[1, 1], [1, 1], [1, 1]];
414         const r0 = HungarianAlgorithm!int(mat0);
415         assert(r0 == [0, 1, -1]);
416     }
417 
418 
419     {
420         const int[][] mat0 = [[1, 2, 3], [6, 5, 4]];
421         const r0 = HungarianAlgorithm!int(mat0);
422         assert(r0 == [0, 2]);
423     }
424 
425     {
426         const int[][] mat0 = [[1, 2, 3], [6, 5, 4], [1, 1, 1]];
427         const r0 = HungarianAlgorithm!int(mat0);
428         assert(r0 == [0, 2, 1]);
429     }
430 
431     {
432         int[][] mat1 = [[  7,  53, 183, 439, 863],
433                         [497, 383, 563,  79, 973],
434                         [287,  63, 343, 169, 583],
435                         [627, 343, 773, 959, 943],
436                         [767, 473, 103, 699, 303]];
437         foreach (row; mat1)
438             row[] *= -1;
439         const r1 = HungarianAlgorithm!int(mat1);
440         // Currently doesn't work with -inline:
441         //r1.length.iota().map!(r => -mat1[r][r1[r]])().reduce!q{a + b}().writeln();
442         int tot1 = 0;
443         foreach (i, r1i; r1)
444             tot1 -= mat1[i][r1i];
445         assert(tot1 == 3315);
446     }
447 
448     {
449         // Euler Problem 345:
450         // http://projecteuler.net/index.php?section=problems&id=345
451         int [][] mat2 = [
452         [  7,  53, 183, 439, 863, 497, 383, 563,  79, 973, 287,  63, 343, 169, 583],
453         [627, 343, 773, 959, 943, 767, 473, 103, 699, 303, 957, 703, 583, 639, 913],
454         [447, 283, 463,  29,  23, 487, 463, 993, 119, 883, 327, 493, 423, 159, 743],
455         [217, 623,   3, 399, 853, 407, 103, 983,  89, 463, 290, 516, 212, 462, 350],
456         [960, 376, 682, 962, 300, 780, 486, 502, 912, 800, 250, 346, 172, 812, 350],
457         [870, 456, 192, 162, 593, 473, 915,  45, 989, 873, 823, 965, 425, 329, 803],
458         [973, 965, 905, 919, 133, 673, 665, 235, 509, 613, 673, 815, 165, 992, 326],
459         [322, 148, 972, 962, 286, 255, 941, 541, 265, 323, 925, 281, 601,  95, 973],
460         [445, 721,  11, 525, 473,  65, 511, 164, 138, 672,  18, 428, 154, 448, 848],
461         [414, 456, 310, 312, 798, 104, 566, 520, 302, 248, 694, 976, 430, 392, 198],
462         [184, 829, 373, 181, 631, 101, 969, 613, 840, 740, 778, 458, 284, 760, 390],
463         [821, 461, 843, 513,  17, 901, 711, 993, 293, 157, 274,  94, 192, 156, 574],
464         [ 34, 124,   4, 878, 450, 476, 712, 914, 838, 669, 875, 299, 823, 329, 699],
465         [815, 559, 813, 459, 522, 788, 168, 586, 966, 232, 308, 833, 251, 631, 107],
466         [813, 883, 451, 509, 615,  77, 281, 613, 459, 205, 380, 274, 302,  35, 805]];
467         foreach (row; mat2)
468             row[] *= -1;
469         const r2 = HungarianAlgorithm!int(mat2);
470         int tot2 = 0;
471         foreach (i, r2i; r2)
472             tot2 -= mat2[i][r2i];
473         assert(tot2 == 13938); // Euler Problem 345 solution.
474     }
475 
476     static T[][] genMat(T)(in int N, in int M, in int seed) {
477         rndGen.seed(seed);
478         auto mat = new T[][](N, M);
479         foreach (row; mat)
480             foreach (ref x; row)
481                 static if (is(T == short))
482                     x = uniform(cast(T)10, cast(T)500);
483                 else
484                     x = uniform(cast(T)10, cast(T)5_000);
485         return mat;
486     }
487 
488     // Steinhaus-Johnson-Trotter permutations algorithm
489     static struct Spermutations {
490         const int n;
491         alias Tuple!(int[], int) TResult;
492 
493         int opApply(int delegate(ref TResult) dg) {
494             int result;
495             TResult aux;
496 
497             int sign = 1;
498             alias Tuple!(int, int) Pair;
499             //auto p = iota(n).map!(i => Pair(i, i ? -1 : 0))().array();
500             auto p = array(map!(i => Pair(i, i ? -1 : 0))(iota(n)));
501 
502             aux = tuple(array(map!(pp => pp[0])(p)), sign);
503             result = dg(aux); if (result) goto END;
504 
505             while (canFind!(pp => pp[1])(p)) {
506                 // Failed using std.algorithm here, too much complex
507                 auto largest = Pair(-100, -100);
508                 int i1 = -1;
509                 foreach (i, pp; p)
510                     if (pp[1]) {
511                         if (pp[0] > largest[0]) {
512                             i1 = i;
513                             largest = pp;
514                         }
515                     }
516                 int n1 = largest[0], d1 = largest[1];
517 
518                 sign *= -1;
519                 int i2;
520                 if (d1 == -1) {
521                     i2 = i1 - 1;
522                     swap(p[i1], p[i2]);
523                     if (i2 == 0 || p[i2 - 1][0] > n1)
524                         p[i2][1] = 0;
525                 } else if (d1 == 1) {
526                     i2 = i1 + 1;
527                     swap(p[i1], p[i2]);
528                     if (i2 == n - 1 || p[i2 + 1][0] > n1)
529                         p[i2][1] = 0;
530                 }
531                 aux = tuple(array(map!(pp => pp[0])(p)), sign);
532                 result = dg(aux); if (result) goto END;
533 
534                 foreach (i3, ref pp; p) {
535                     auto n3 = pp[0], d3 = pp[1];
536                     if (n3 > n1)
537                         pp[1] = (i3 < i2) ? 1 : -1;
538                 }
539             }
540 
541             END: return result;
542         }
543     }
544 
545     static T bruteForceSolver(T)(in T[][] mat) /*pure nothrow*/
546 	in(mat.length > 0)
547     in
548 	{
549         // Currently works only with square matrices.
550         foreach (row; mat) // Is square.
551             assert(row.length == mat.length);
552     }
553 	do
554 	{
555         auto maxTotal = -T.max;
556         foreach (p; Spermutations(mat.length)) {
557             T total = 0;
558             foreach (i, pi; p[0])
559                 total += mat[i][pi];
560             maxTotal = max(maxTotal, total);
561         }
562         return maxTotal;
563     }
564 
565     foreach (T; TypeTuple!(double, int, float, short, long)) {
566         // Fuzzy test.
567         foreach (test; 0 .. 10) {
568             auto mat3 = genMat!T(2 + test % 8, 2 + test % 8, test);
569             foreach (row; mat3)
570                 row[] *= -1;
571             const r3 = HungarianAlgorithm!T(mat3);
572             T tot3 = 0;
573             foreach (i, r3i; r3)
574                 tot3 -= mat3[i][r3i];
575             foreach (row; mat3)
576                 row[] *= -1;
577             assert(tot3 == bruteForceSolver(mat3));
578         }
579     }
580 
581     version (hungarian_benchmark) {
582         foreach (T; TypeTuple!(double, int, float, short, long)) {
583             auto mat4 = genMat!T(2_000, 2_000, 0);
584             StopWatch sw;
585             sw.start();
586             const r4 = HungarianAlgorithm!T(mat4);
587             sw.stop();
588             writefln("Type %s, milliseconds: %d",
589                      T.stringof, sw.peek().msecs);
590         }
591         /*
592         Type double, milliseconds: 1032
593         Type int, milliseconds: 834
594         Type float, milliseconds: 859
595         Type short, milliseconds: 9221
596         Type long, milliseconds: 1306
597         */
598     }
599 }
600 
601 //void main() {}